Quantum Sensors for HEP

Thursday, April 27, 2023 - Saturday, April 29, 2023 Yale University

Book of Abstracts

Contents

Introduction, discussion of goals of workshop	1
Fundamental Physics with Quantum Sensors	1
QIS for HEP 2025+: Theory Targets and Opportunities	1
Discussion of working group logistics, goals	1
Q&A, logistics	1
Breakout into separate working groups	1
The need for quantum sensors for HEP science	1
Superconducting Nanowire Single Photon Detectors with Ultra-low energy threshold	2
Axion DM with low-threshold SNSPDs	2
Improvements to the LAMPOST Experiment	2
Precision Timing and Scalable Readout for low threshold SNSPDs	2
Dielectric Powder as an Axion/Dark Photon Haloscope	2
Quantum Capacitance Detectors for Terahertz Single Photon Counting	2
Dark Matter detection with Quantum Capacitance Detectors	2
Kinetic Inductance Traveling-Wave Parametric Amplifiers	3
Cavity Optomechanical Search for Axions	3
Converting Interferometers into HEP dectors with high-isolation single-photon detection	3
Testing the standard model and probing the dark sector by measuring the fine structure constant	3
MAGIS: Extending High Energy Physics with Atom Interferometry	3
Distributed Atomic Sensing in the Long Island Quantum Network	3
Direct detection of ultralight dark matter with space quantum sensors	4
Quantum-Assisted Optical Interferometry for Precision Astrometry	4
Training chatGPT on quantum impedance networks of QED	4

Exploiting the Physics of the Field for Compute-in-Sensor	4
Understanding and Mitigating quasi-particle excess due to phonons and IR produced by stress relaxation	4
Material science of quantum sensors	4
Sapphire substrate qubits for low mass Dark Matter searches	4
Optical Strain Sensing for Particle Detection	5
Closing the Loop on Quantum Research with Skipper-CCDs: DOE-OHEP's Contribution to Advancements in Quantum Sensing	5
Nuclear decays with mechanical quantum sensors	5
The Windchime Project	5
Back action evasion and quantum noise reduction in quantum magnetometers for particle and field detectors	5
Quantum Enhanced Detection of Quantum Fields and Particles through Networked Entangled Sensors	5
Entanglement-enhanced optomechanical dark matter detectors	6
Welcome to Yale	6
Rydberg atoms as single-photon detectors for axions	6
Noble and Alkali Spin Detectors for Ultralight Coherent darK matter (NASDUCK)	6

Introduction and organization / 11

Introduction, discussion of goals of workshop

 $\textbf{Corresponding Authors:} \ reina. maruyama@yale.edu, irwin@stanford.edu, achou@fnal.gov\\$

Introduction and organization / 12

Fundamental Physics with Quantum Sensors

Corresponding Author: srajend4@jhu.edu

Introduction and organization / 13

QIS for HEP 2025+: Theory Targets and Opportunities

Corresponding Author: kzurek@caltech.edu

Organize and mobilize / 14

Discussion of working group logistics, goals

Corresponding Authors: reina.maruyama@yale.edu, irwin@stanford.edu, achou@fnal.gov

Introduction and organization / 15

Q&A, logistics

 $\textbf{Corresponding Authors:} \ reina. maruyama@yale.edu, irwin@stanford.edu, achou@fnal.gov$

Organize and mobilize / 16

Breakout into separate working groups

Hybrid town hall 1/35

The need for quantum sensors for HEP science

 $\begin{center} \textbf{Corresponding Author:} a chou@fnal.gov \end{center}$

Hybrid town hall 1/36

Superconducting Nanowire Single Photon Detectors with Ultralow energy threshold

Corresponding Author: matthew.d.shaw@jpl.nasa.gov

Hybrid town hall 1/37

Axion DM with low-threshold SNSPDs

Corresponding Author: cmorgoth@fnal.gov

Hybrid town hall 1/38

Improvements to the LAMPOST Experiment

Corresponding Author: skoppell@mit.edu

Hybrid town hall 1/39

Precision Timing and Scalable Readout for low threshold SNSPDs

Corresponding Author: sixie@caltech.edu

Hybrid town hall 1/40

Dielectric Powder as an Axion/Dark Photon Haloscope

Corresponding Author: skoppell@mit.edu

Hybrid town hall 1/41

Quantum Capacitance Detectors for Terahertz Single Photon Counting

Hybrid town hall 1/42

Dark Matter detection with Quantum Capacitance Detectors

Corresponding Author: rkhatiw@fnal.gov

Hybrid town hall 1/43

Kinetic Inductance Traveling-Wave Parametric Amplifiers

Corresponding Author: ritoban@caltech.edu

Hybrid town hall 1/44

Cavity Optomechanical Search for Axions

Corresponding Author: yogesh.patil@yale.edu

Hybrid town hall 1/45

Converting Interferometers into HEP dectors with high-isolation single-photon detection

Corresponding Author: mcculler@caltech.edu

Hybrid town hall 1/46

Testing the standard model and probing the dark sector by measuring the fine structure constant

Corresponding Author: hm@berkeley.edu

Hybrid town hall 1/47

MAGIS: Extending High Energy Physics with Atom Interferometry

Corresponding Author: sanha@stanford.edu

Hybrid town hall 1/48

Distributed Atomic Sensing in the Long Island Quantum Network

Corresponding Author: jmartinez1@bnl.gov

Hybrid town hall 1/49

Direct detection of ultralight dark matter with space quantum sensors

Corresponding Author: yt444@cornell.edu

Hybrid town hall 1/50

Quantum-Assisted Optical Interferometry for Precision Astrometry

Corresponding Author: stankus@rcf.rhic.bnl.gov

Hybrid town hall 1/51

Training chatGPT on quantum impedance networks of QED

Corresponding Author: electrongaugegroup@gmail.com

Hybrid town hall 2 / 52

Exploiting the Physics of the Field for Compute-in-Sensor

Corresponding Author: fleonar@sandia.gov

Hybrid town hall 2 / 53

Understanding and Mitigating quasi-particle excess due to phonons and IR produced by stress relaxation

Corresponding Author: mpyle1@berkeley.edu

Hybrid town hall 2 / 54

Material science of quantum sensors

Corresponding Author: pereverzev1@llnl.gov

Hybrid town hall 2 / 55

Sapphire substrate qubits for low mass Dark Matter searches

Corresponding Author: rkhatiw@fnal.gov

Hybrid town hall 2 / 56

Optical Strain Sensing for Particle Detection

Corresponding Author: dtemples@fnal.gov

Hybrid town hall 2 / 57

Closing the Loop on Quantum Research with Skipper-CCDs: DOE-OHEP's Contribution to Advancements in Quantum Sensing

Corresponding Author: javiert@fnal.gov

Hybrid town hall 2 / 58

Nuclear decays with mechanical quantum sensors

Corresponding Author: carney@lbl.gov

Hybrid town hall 2 / 59

The Windchime Project

 $\textbf{Corresponding Author:} \ rafael@purdue.edu$

Hybrid town hall 2 / 60

Back action evasion and quantum noise reduction in quantum magnetometers for particle and field detectors

Corresponding Author: marvinneyce@ornl.gov

Hybrid town hall 2 / 61

Quantum Enhanced Detection of Quantum Fields and Particles through Networked Entangled Sensors

Corresponding Author: marinoa@ornl.gov

Hybrid town hall 2 / 62

Entanglement-enhanced optomechanical dark matter detectors

Corresponding Author: dalziel@arizona.edu

Introduction and organization $/\ 63$

Welcome to Yale

Hybrid town hall 2 / 64

Rydberg atoms as single-photon detectors for axions

Corresponding Author: reina.maruyama@yale.edu

Hybrid town hall 2 / 65

Noble and Alkali Spin Detectors for Ultralight Coherent darK matter (NASDUCK)

Corresponding Author: itay.bloch.m@gmail.com